

DATA SHEET

ANTI SURGE AND ANTI SULFURATION AUTOMOTIVE GRADE CHIP RESISTORS

AS series 0.5%, 1%, 5%, 10%, 20% sizes 0603/0805/1206

RoHS compliant & Halogen free

Product specification – April 8, 2021 V.I

YAGEO

Chip Resistor Surface MountASSERIES0603/0805/1206

10

<u>SCOPE</u>

This specification describes AS0603 to AS1206 chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- Telecommunications
- Power supplies
- Car electronics

FEATURES

- AEC-Q200 qualified
- Superior to AS series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- RoHS compliant
- Reduce environmentally hazardous waste
- High component and equipment reliability

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AS XXXX X X X XX XXX L

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0603 / 0805 / 1206

(2) TOLERANCE

 $D = \pm 0.5\%$ F = ±1% J = ± 5% K = ±10% M = ±20%

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL & POWER

7T = 7 inch dia. Reel & 3 x standard power

47 = 7 inch dia. Reel & 4 x standard power

(6) RESISTANCE VALUE

$| \Omega \leq R \leq |M \Omega|$

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. IK2, not IK20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. ^(Note)

Resistance rule of global part number			
Resistance coding rule	Example		
XRXX (1 to 9.76 Ω)	IR = ΙΩ IR5 = I.5 Ω 9R76 = 9.76 Ω		
XXRX (10 to 97.6 Ω)	$10R = 10 \Omega$ 97R6 = 97.6 Ω		
XXXR (100 to 976 Ω)	100R = 100 Ω		
XKXX (1 to 9.76 K Ω)	IK = 1,000 Ω 9K76 = 9760 Ω		
XXKX (10 to 97.6 K Ω)	10K = 10,000 Ω 97K6= 976,000 Ω		
×××κ (100 κΩ)	100K = 100,000 Ω		

ORDERING EXAMPLE

The ordering code for an AS0805 chip resistor, value 10 K Ω with ±5% tolerance, supplied in 7-inch tape reel is: AS0805JR-0710KL.

YAGEO

Chip Resistor Surface MountAsSERIES0603/0805/1206

 MARKING

 AS0603

 Fig. 1
 Value = 24 Ω 1%, 0.5%, E24 exception values 10/11/13/15/20/75 of E24 series

 Fig. 1
 Value = 24 Ω 1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series

 Fig. 2
 Value = 806 Ω 1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series

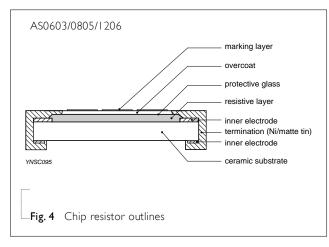
 AS0805 / 1206
 Both E-24 and E-96 series: 4 digits, ±0.5% & ±1%
 First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please refer to data sheet "Chip resistors marking".

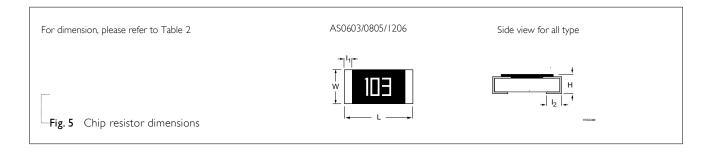
TAPING REEL & POWER

Table I


		F	OWER, W (P70)		
TYPE			CODING		
	07	7W	7T	47	
0603	1/10	1/5	1/4	-	
0805	1/8	1/4	1/3	1/2	
1206	1/4	1/2	3/4	-	

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig.4.


OUTLINES

DIMENSIONS

Table 2

ТҮРЕ	L (mm)	W (mm)	H (mm)	lı (mm)	l2 (mm)
AS0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
AS0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
AS1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.40±0.20

ELECTRICAL CHARACTERISTICS

Table	3						
				(CHARACTER	ISTICS	
TYPE	POWER	RESISTANCE RANGE	Operating Temperature	Max. Working	Max. Overload	Dielectric Withstanding	Temperature Coefficient of
		NANGE	Range	Voltage	Voltage	Voltage	Resistance
	1/10W						
AS0603	1/5W			75V	150V	150V	
	1/4W		_				
AS0805	1/8W	E24 5%, 10%, 20%					$ \Omega \le R \le 0\Omega $
	1/4W	$ \Omega \leq R \leq M\Omega $	–55 °C to +155 °C	150V 300V	2001/	2001	± 200 ppm°C
A30003	1/3W	E24/E96 0.5%, 1%			300V	$10\Omega < R \le 1M\Omega$	
	1/2W	$ \Omega \leq R \leq M\Omega $					± 100 ppm°C
	1/4W		_				
ASI 206	1/2W			200 V	400 V	500V	
	3/4W						

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 4 Packing sty	Packing style and packaging quantity			
PACKING STYLE	REEL DIMENSION	AS0603/0805/1206		
Paper taping reel (R)	7" (178 mm)	5,000		

ΝΟΤΕ

I. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

YAGEO

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

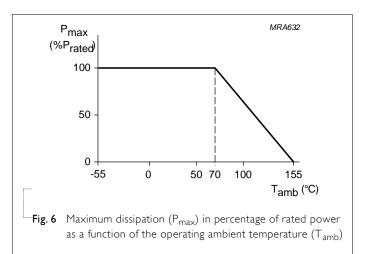
Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: AS0603: 1/10W, 1/5W, 1/4W AS0805: 1/8W, 1/4W, 1/3W, 1/2W AS1206: 1/4W, 1/2W, 3/4W

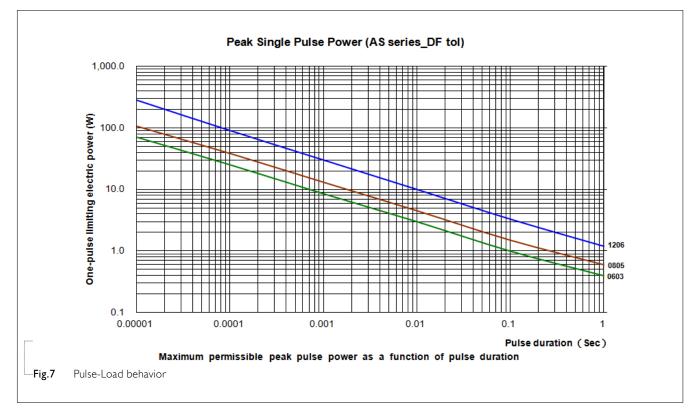
RATED VOLTAGE

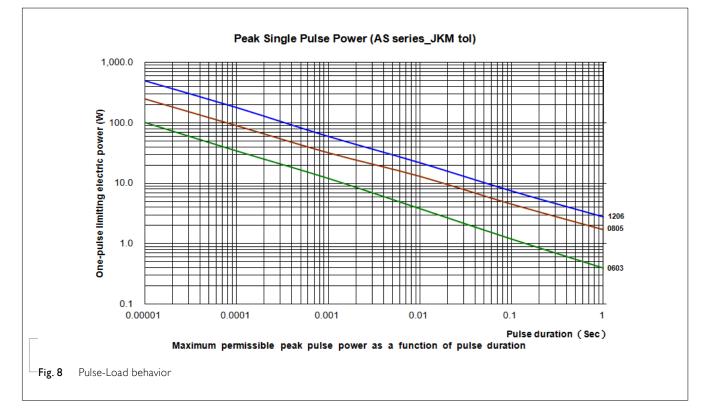
The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)


P = Rated power (W)


 $R = Resistance value (\Omega)$

PULSE LOAD BEHAVIOR

YAGEO

TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature	AEC-Q200 Test 3	1,000 hours at T_A = 155 °C, unpowered	\pm (1.0%+0.05 Ω) for D/F tol
Exposure	MIL-STD-202 Method 108		$\pm(2.0\%+0.05\Omega)$ for J tol
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for	$\pm (0.5\% + 0.05\Omega)$ for D/F tol
		10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(2.0%+0.05 Ω) for J tol
Biased Humidity	AEC-Q200 Test 7	1,000 hours; 85 °C / 85% RH	±(1.0%+0.05Ω) for D/F tol
Trainiary	MIL-STD-202 Method 103	10% of operating power Measurement at 24±4 hours after test conclusion.	$\pm(3.0\%+0.05\Omega)$ for J tol
Operational Life	AEC-Q200 Test 8	1,000 hours at 125 °C, derated voltage applied for	±(1.0%+0.05Ω) for D/F tol
	MIL-STD-202 Method 108	1.5 hours on, 0.5 hour off, still-air required	$\pm (3.0\% + 0.05\Omega)$ for J tol
Resistance to	AEC-Q200 Test 15	Condition B, no pre-heat of samples	±(0.5%+0.05Ω) for D/F tol
Soldering Heat	MIL-STD-202 Method 210	Lead-free solder, 260±5 °C, 10±1 seconds immersion time	\pm (1.0%+0.05 Ω) for J tol No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	-
Thermal Shock	AEC-Q200 Test 16	-55/+125 °C	±(0.5%+0.05Ω) for D/F tol
	MIL-STD-202 Method 107	Number of cycles is 300. Devices mounted	$\pm (1.0\% {+} 0.05 \Omega)$ for J tol
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
ESD	AEC-Q200 Test 17	Human Body Model,	±(3.0%+0.05Ω)
	AEC-Q200-002	I _{pos.} + I _{neg.} discharges 0201: 500V	
		0402/0603: IKV	
		0805 and above: 2KV	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Solderability	AEC-Q200 Test 18	Electrical Test not required Magnification 50X	Well tinned (≥95% covered	
- Wetting	J-STD-002	SMD conditions:	No visible damage	
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.		
		(b) Method B, steam aging 8 hours, dipping at 215±3 ℃ for 5±0.5 seconds.		
		(c) Method D, steam aging 8 hours, dipping at 260±3 ℃ for 30±0.5 seconds.		
Board Flex	AEC-Q200 Test 21	Chips mounted on a 90mm glass epoxy resin	±(1.0%+0.05Ω)	
	AEC-Q200-005	PCB (FR4)		
		Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm		
		Holding time: minimum 60 seconds		
Temperature	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 3	
Coefficient of Resistance (T.C.R.)		Formula:		
		T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$		
		Where t ₁ =+25 °C or specified room temperature		
		t_2 =–55 °C or +125 °C test temperature		
		R_1 =resistance at reference temperature in ohms		
		R ₂ =resistance at test temperature in ohms		
Short Time Overload	IEC60115-14.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	\pm (1.0%+0.05Ω) for D/F tol ±(2.0%+0.05Ω) for J tol	
FOS	ASTM-B-809-95*	Sulfur 750 hours, 105 °C, unpowered	± (4.0%+0.05Ω)	

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	Nov. 30, 2020	-	- New product datasheet
Version I	Apr. 08, 2021	-	- Upgrade to Automotive Grade

"YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

"The reimbursement is limited to the value of the products."

